41 research outputs found

    On the energy efficiency of electric vehicles with multiple motors

    Get PDF
    Electric Vehicles (EVs) with multiple motors permit to design the steady-state cornering response by imposing reference understeer characteristics according to expected vehicle handling quality targets. To this aim a direct yaw moment is generated by assigning different torque demands to the left and right vehicle sides. The reference understeer characteristic has an impact on the drivetrain input power as well. In parallel, a Control Allocation (CA) strategy can be employed to achieve an energy-efficient wheel torque distribution generating the reference yaw moment and wheel torque. To the knowledge of the authors, for the first time this paper experimentally compares and critically analyses the potential energy efficiency benefits achievable through the appropriate set-up of the reference understeer characteristics and wheel torque CA. Interestingly, the experiments on a four wheel-drive EV demonstrator show that higher energy savings can be obtained through the appropriate tuning of the reference cornering response rather than with an energy efficient CA

    A fast and parametric torque distribution strategy for four-wheel-drive energy-efficient electric vehicles

    Get PDF
    Electric vehicles (EVs) with four individually controlled drivetrains are over-actuated systems, and therefore, the total wheel torque and yaw moment demands can be realized through an infinite number of feasible wheel torque combinations. Hence, an energy-efficient torque distribution among the four drivetrains is crucial for reducing the drivetrain power losses and extending driving range. In this paper, the optimal torque distribution is formulated as the solution of a parametric optimization problem, depending on the vehicle speed. An analytical solution is provided for the case of equal drivetrains, under the experimentally confirmed hypothesis that the drivetrain power losses are strictly monotonically increasing with the torque demand. The easily implementable and computationally fast wheel torque distribution algorithm is validated by simulations and experiments on an EV demonstrator, along driving cycles and cornering maneuvers. The results show considerable energy savings compared to alternative torque distribution strategies

    How to Implement Drones and Machine Learning to Reduce Time, Costs, and Dangers Associated with Landmine Detection

    Get PDF
    Two rapidly emerging technologies revolutionizing scientific problem solving are unpiloted aerial systems (UAS), commonly referred to as drones, and deep learning algorithms.1 Our study combines these two technologies to provide a powerful auxiliary tool for scatterable landmine detection. These munitions are traditionally challenging for clearance operations due to their wide area of impact upon deployment, small size, and random minefield orientation. Our past work focused on developing a reliable UAS capable of detecting and identifying individual elements of PFM-1 minefields to rapidly assess wide areas for landmine contamination, minefield orientation, and possible minefield overlap. In our most recent proof-of-concept study we designed and deployed a machine learning workflow involving a region-based convolutional neural network (R-CNN) to automate the detection and classification process, achieving a 71.5% rate of successful detection.2 In subsequent trials, we expanded our dataset and improved the accuracy of the CNN to detect PFM-1 anti-personnel mines from visual (RGB) UAS-based imagery to 91.8%. In this paper, we intend to familiarize the demining community with the strengths and limitations of UAS and machine learning and suggest a fit of this technology as a key auxiliary first look area reduction technique in humanitarian demining operations. As part of this effort, we seek to provide detailed guidance on how to implement this technique for non-technical survey (NTS) support and area reduction of confirmed and suspected hazardous areas with minimal resources and funding

    Design and Evaluation Framework for Modular Hybrid Battery Energy Storage Systems in Full-Electric Marine Applications

    Get PDF
    In the context of the maritime transportation sector electrification, battery hybridization has been identified as a promising manner of meeting the critical requirements on energy and power density, as well as lifetime and safety. Today, multiple promising battery hybridization topologies have been identified, while there is not a level playing field enabling comparison between different topologies. This study bridges this gap directly by proposing a generic hybrid battery energy storage system (HBESS) design and evaluation framework in full-electric marine applications that accounts for the key design requirements in the system topology conceptualization phase. In doing so, generalized key component models, such as battery cell models, aging models, power converter models, and thermal models, are established. Additionally, given the selected key requirements in this study, the case study comparing one baseline monotype design and two HBESS topologies has shown the clear advantage of battery hybridization. Furthermore, we find that, depending on the topology selection and the specific load scenario being considered, power converter devices can also worsen the key performance indexes. Keywords: hybrid battery energy storage system; modular battery system; design and evaluation frameworkDesign and Evaluation Framework for Modular Hybrid Battery Energy Storage Systems in Full-Electric Marine ApplicationspublishedVersio

    A characterization of EM coupling in a fully electric 4-wheel drive vehicle

    Get PDF
    Electric vehicles are complex systems in which EMC must be approached in a significantly different way to the one in conventional cars. The presence of high power supplies assembled in a very small room together with signalling, control and communications devices brings about new issues related to EM disturbances and noise coupling that must be addressed in order to ensure a good performance of the systems. To achieve this, the understanding of the way noise is generated, propagates and couples within the system is critical so as to improve the immunity of the components and, eventually, the whole car. This paper presents the results of an EMC study focused on the electromagnetic interferences that take place in a fully electric vehicle. The outcome in this work is part of an EMC approach that involves an analysis of the emissions and coupling phenomena that may cause an impact on the system safety and performance. To perform this analysis, a campaign of experimental tests has been carried out on the vehicle. This task has been performed within the E-VECTOORC project (FP7-INFSO-284078), in collaboration with Jaguar Land Rover and r¿koda

    On the Feedback Control of Hitch Angle through Torque-Vectoring

    Get PDF
    This paper describes a torque-vectoring (TV) algorithm for the control of the hitch angle of an articulated vehicle. The hitch angle control function prevents trailer oscillations and instability during extreme cornering maneuvers. The proposed control variable is a weighted combination of terms accounting for the yaw rate, sideslip angle and hitch angle of the articulated vehicle. The novel control variable formulation results in a single-input single-output (SISO) feedback controller. In the specific application a simple proportional integral (PI) controller with gain scheduling on vehicle velocity is developed. The TV system is implemented and experimentally tested on a fully electric vehicle with four on-board drivetrains, towing a single-axle passive trailer. Sinusoidal steer test results show that the proposed algorithm significantly improves the behavior of the articulated vehicle, and justify further research on the topic of hitch angle control through TV

    Inspiring the Next Generation of Humanitarian Mine Action Researchers

    Get PDF
    Humanitarian mine action (HMA) is a critically under-researched field when compared to other hazards fields of similar societal impact. A potential solution to this problem is early exposure to and engagement in the HMA field in undergraduate education. Early undergraduate education emphasizing technical and social aspects of HMA can help protect lives by building a robust pipeline of passionate researchers who will find new solutions to the global explosive ordnance (EO) crisis. Early engagement of the next generation of HMA researchers and policy makers can occur through various classroom experiences, undergraduate research projects, and public outreach events. These include but are not limited to course-based undergraduate research experiences (CUREs); presenting research results at local, national, and international conferences; dissemination in edited and peer-reviewed publications; local community events; and through social media outreach. Early engagement, active guidance, and mentorship of such students by mid-career and experienced HMA scholars and practitioners could dramatically reduce the learning curve associated with entry into the HMA sector and allow for more fruitful long-term collaboration between academic institutions, private industry, and leading nongovernmental organizations (NGOs) operating across different facets of HMA

    On the Experimental Analysis of Integral Sliding Modes for Yaw Rate and Sideslip Control of an Electric Vehicle with Multiple Motors

    Get PDF
    With the advent of electric vehicles with multiple motors, the steady-state and transient cornering responses can be designed and implemented through the continuous torque control of the individual wheels, i.e., torque-vectoring or direct yaw moment control. The literature includes several papers on sliding mode control theory for torque-vectoring, but the experimental investigation is so far limited. More importantly, to the knowledge of the authors, the experimental comparison of direct yaw moment control based on sliding modes and typical controllers used for stability control in production vehicles is missing. This paper aims to reduce this gap by presenting and analyzing an integral sliding mode controller for concurrent yaw rate and sideslip control. A new driving mode, the Enhanced Sport mode, is proposed, inducing sustained high values of sideslip angle, which can be limited to a specified threshold. The system is experimentally assessed on a four-wheel-drive electric vehicle. The performance of the integral sliding mode controller is compared with that of a linear quadratic regulator during step steer tests. The results show that the integral sliding mode controller significantly enhances the tracking performance and yaw damping compared to the more conventional linear quadratic regulator based on an augmented singletrack vehicle model formulation. © 2018, The Korean Society of Automotive Engineers and Springer-Verlag GmbH Germany, part of Springer Natur

    Scatterable Landmine Detection Project Dataset 5

    No full text

    Scatterable Landmine Detection Project Dataset 3

    No full text
    corecore